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Hierarchical cluster structures in a one-dimensional swarm oscillator model
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Swarm oscillator model derived by one of the authors (Tanaka), where interacting motile elements form
various kinds of patterns, is investigated. We particularly focus on the cluster patterns in one-dimensional
space. We mathematically derive all static and stable configurations in final states for a particular but a large set
of parameters. In the derivation, we introduce renormalized expression of this model. We find that the static
final states are hierarchical cluster structures in which a cluster consists of smaller clusters in a nesting manner.
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I. INTRODUCTION

Cluster formation is one of the specific features in self-
organizing systems. Various kinds of models exhibiting clus-
ter structures have been proposed and analyzed to date: mod-
els for self-propelled particles which is known as Vicsek
model [1-8], those with the active Brownian motion [9-14],
those for deterministic dynamical systems [15-19], and a
gaslike model with a coupled map [20,21]. In self-organizing
systems, the existence of internal states of the elements often
leads to diversity of collective behaviors because it brings
about both attractive and repulsive interactions between ele-
ments.

In this paper, we focus on swarm oscillator model, which
was derived by one of the authors (Tanaka) [22]. We simply
refer to it as SO model in what follows. SO model has the
following features. Elements each of which has an internal
degree of freedom are spatially distributed. The governing
equations for each element are

Bi= 2 e Ril sin(Wy+ aR;| - c)), (1
li# i

':l' =c3 2 ﬁjie_lei‘ Sln("l’jl + a|le| - CZ) . (2)
{jli=i}

Here, ¢; (mod 27r) or r; denotes the phase or the position of
the ith element, respectively. The overdot represents differ-

entiation with respect to time. Rj;:=r;—r;, Iéj[::Rﬁ/ |Rﬂ , and
W ;= ¢y~ ;. From the physical point of view, we can regard
the phase as a simple representation of an internal state of an
element such as magnetic or electric polarity of an atom or
a molecule, molecular geometry, or a state of bacterium or
a cell. This model has four real parameters, 0=c; <2,
0=c,<2m, 0=cj3, and 0 = a. Compared with models in pre-
vious studies, this model can be regarded as an extended
nonlocally coupled motile phase-oscillator model [23-26]
because of the interaction between elements with sinusoidal
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functions. The sinusoidal functions include phase shifts, ¢
and c,. It has been found that nonzero phase shifts break odd
symmetries of coupling functions and cause rich structures
or patterns in phase-oscillator systems [27-29]. It should be
noted that this model has the following physical background
[22]. Here we review it briefly. It is assumed that elements
are spatially distributed in a chemical field that diffuses in
space. Each element in isolation has a self-sustained dynami-
cal system. The internal dynamics is characterized by a su-
percritical Hopf bifurcation above which exhibits oscillatory
dynamics. The motion of each element is driven by the local
gradient of the chemical density, and the elements produce
and consume this chemical in amounts that depend on their
internal states. From this general model for chemotactic os-
cillators, SO model is derived by means of the center-
manifold reduction and the phase reduction [23]. In short,
SO model describes an asymptotic behavior of the above
system for chemotactic oscillators. In spite of the simplicity
of the equations, this model exhibits a rich variety of ordered
structures depending on the four parameter values, the num-
ber of elements N, and the system size L. Some results of
numerical simulations are shown in Fig. 1. Judging from this
richness, it can be inferred that this model holds mathemati-
cal structures which underlie various collective behaviors.
Therefore, analyzing this model in detail seems to be signifi-
cant to understand the mechanism or essential factors of vari-
ous kinds of structure formations.

Among patterns SO model exhibits, we concentrate on
cluster patterns in this paper. SO model is unique in the point
that elements form clustered cluster structures, that is, a large
cluster consists of some smaller clusters (bottom-left figure
in Fig. 1). To comprehend the behavior mathematically and
analytically, considering a simpler model is one of the best
strategies. In this paper, we investigate a particular type
of one-dimensional SO model. As a result, we analytically
derive all of the static configurations of the elements and
identify all cluster structures in final states of the one-
dimensional model for a particular but a large set of param-
eters.

II. MODEL

This paper investigates a specific type of one-dimensional
swarm oscillator model, which is the following system of
ordinary differential equations:
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FIG. 1. (Color online) Examples of spatial patterns exhibited by swarm oscillator model in two-dimensional space. Color (grayscale)
represents the phase of oscillators. Some are static states and others are steadily moving states.

¢i = E e_‘Rji‘ Sin(’\lfﬁ + a|Rﬂ| - C), (3)
J#Fi
. Rii v
ri=c32 e " Sln(\lfﬁ+ a|Rﬂ| —C). (4)

J#EL i

Here, ;(mod 27) or r; (i=1,2,...,N) denotes the phase or
the position of the ith element, respectively. N is the total
number of elements. The overdot represents differentiation
with respect to time. Rj;:=r;~r; and W;:= ¢y~ . c3 and «
are positive parameters, and 0=c<2. The system size is
finite but large enough. Note that Egs. (3) and (4) are a
particular type of Egs. (1) and (2), with ¢;=c,=:c¢ in one-
dimensional space. Next, we introduce valuables, 6;:= ¢,
—¢; (mod 27) and p;:=r;—r; (i=1,2,...,N—1). As long
as we focus on the long-time behavior where elements are
almost static, we can assume p;=0 without loss of general-
ity. Then, Egs. (3) and (4) become

i-1 .

b= it sin(a
j=1

i-1 i-1

/ P> gk_c>

k=j k=j

N-1 _ J J
+ > e Zheifk sin(af > Pr+ > 0, — c) , (5)
=i k=i k=i

i-1 i-1

aZ Pk—z 0k_c)
k=j k=j

i

i-1
i1
-3 > e e P sin(
J=1
N-1 4 j j
ey e k=i P sin(a > et 0 - c) . (6)
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This dynamical system has the following characteristic,
which is useful for analysis of this model.

Proposition. For the dynamical system [Egs. (5) and (6)],
=" =y=r1==iy=00=" =0y 1=p;=""=pyy
=0. That is to say, all fixed points of the dynamical system
constituted by {p;} and {6;} represent static states with respect
to positions {r;} and phases {i;}.

Proof. = is trivial. We show <. Since 6,=0 and p,=0 for
all 7, [pl == tlfN and 7;=---=Fy. According to the equations
for g, iy, 71, and 7y in Egs. (5) and (6), we see #1=csif
and 7y=—c3 z'ﬂN. Therefore, using c3#0, z'ﬂl = ¢N=O, and
1 =Fy=0. Thus, i{="-=Fy=g =" =y=0. ]

Some results of the numerical simulations are shown in
Fig. 2. We see that hierarchical cluster structures appear, that

is, several size of clusters are formed and a larger cluster
consists of smaller clusters in a nesting manner.

e0D® & ® Oe @0 oe@m o8

FIG. 2. (Color online) Two examples of clusters exhibited by one-dimensional SO model. The parameter values here are ¢=1.0,
c3=1.5, a=1.5, N=30, and L=100. The initial conditions are such that the positions and the phases are randomly distributed. Color
(grayscale) represents the phase of each element. These are final states where all positions and phases of the elements are static. Although
these calculations are held with the periodic boundary condition, behavior in this system is the same as what is investigated in this paper

because the system size is large enough.
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III. RENORMALIZED EQUATION OF MOTION

For the sake of clear discussion in what follows, we in-
troduce the “renormalized” expression of SO model Egs. (3)
and (4). That is,

1]/1 =Ale " sin(ap, + 0, — c — k}), (7)
Fi=c3ATe P sin(ap, + 0, —c — k7)., ()

h=A e Pt sin(ap;_y — 0,1 — ¢ — k)

+AfePisin(ap;+ 0,— c— k), )
Fi=—c3A e Pt sin(ap — O — ¢ — ki)
+c3ATePisin(ap;+ 0, - c — k), (10)

Yy =Ay_e N1 sin(apy — Oy_ —c— Kky_p), (1)

Fy=—c3AN_1e PV-1sin(apy_ — Oy_1 — ¢ — ky_y). (12)

where i=2,...,N-1. Both A7 and «; (i=1,...,N-1) are
the functions with respect to {p;,...,pi_1,6;,...,0,_}, and
both A] and «! (i=1,...,N—1) are those with respect to
{Pis1s - sPN-150ir15 - s On_1}. Obviously, AT=Ay_,;=1 and
k;=Ky_1=0. The derivation of these equations is shown in
the Appendix. From the physical point of view, many-body
effects in this system are renormalized to {«;,«;,A;,A’}.
That is to say, the interaction with further elements than the
nearest neighbors are renormalized to {«;,x;,A; ,A7}. Note
that, if k; =«;=0 and A;=A[=1 for all i, these equations are
the same as those constructed by taking only the interaction
with the nearest-neighbor elements into consideration, what
we call the nearest-neighbor approximation in what follows.
With this renormalized expression of SO model, next we find
fixed points, their stabilities, and, as a result, all static cluster
states.

IV. FIXED POINTS

Let us find fixed points of this system. The fixed points
are the solutions of the algebraic equations, {ﬁ,:f,-:O, which
read as

sin(ap;— 0;—c-«;) =0, (13)
sin(ap;+ 6;—c— ;) =0,

N-1. (14)

Then, there are two types of fixed points. One of them is
formally written as
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1
pi=£[2c+2n[ﬂ'+ K+ K], (15)

1 1
0i=5(’<i+—"i_) or aizz(K:'r_Ki_)JrW' (16)
The other is

1
pi=2_[2C+(2ni+1)7T+ K + K], (17)
a

1 1 3
a[=5(K7—K;)+§ or ei=5(,<,.+—,<;)+777. (18)

Here n; is an integer which satisfies p;>0. We refer to the
former type or the latter type as type (I) or type (II), respec-
tively. If we self-consistently solve these equations with re-
spect to {p;} and {6,}, we obtain the distances and the phase
differences between elements in principle. Although con-
struction of exact solutions is difficult by analytical calcula-
tions, we can approximately find the distances and the phase
differences including many-body effects under the condition

2c+
L€+ RT = 1. (19)
2a

Here n, denotes the minimal integer which satisfies 2c¢
+nym>0. Then, both «; and «; are small enough compared
with 1, and A7 and A are nearly equal to 1 for all i, in terms
of the results in the Appendix. This condition holds except
special case, a>1, ¢ = 757, or c= %T Therefore, each distance
between adjacent elements takes discrete values labeled by
an integer n;. Note that, since the nearest-neighbor analysis is
the same as that for the case of «; =«; =0 for all i, each static
configuration of elements can be corresponded to one of the
static configurations for the nearest-neighbor approximation.

V. LINEAR STABILITY ANALYSIS

By means of the linear stability analysis, let us find con-
figurations of elements which can finally emerge under the
above condition. It is shown that the stability of each fixed
point is the same as that with the nearest-neighbor approxi-
mation as follows. Here we particularly consider fixed points
of type (I). As we remark later again, note that we can dis-
cuss for type (IT) in the same manner. Let {p,, 6,} be a fixed
point of the full dynamics of SO model, that is to say,

Sin(apOi - 001' - C— Kai) = O, (20)
sin(apg; + Op; = ¢ = Kp;) =0,
for i=1,..

LN-1. (21)

Then, for 6;=: 6,;+ 5,- and p; =: py;+p;, we obtain the follow-
ing linearized equations:
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— + —0: . +
c—K;)+ AL e Pt sin(appy + i — ¢ — Kipy)

c—K)), (22)
~
% ol ]
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o
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where |, denotes the substitution of (p, 6) after differentiation, and o;:= cos(apy;— Oy;—c — k) =cos(apy;+ Op;—c— kiy) =1 or

—1 for fixed points of type (I). In the same way, we obtain

p - rl+1 A ePi Sln(apz 61

+Ai__le_”i-1 sin(ap;_ — 6,

- - .~ oK; | ~ 0K; | ~ . _ - o"KTI aKTI _
pi=—Age oy api— 0= 2 5| 6= 2 | P | +Agie P 0u | @y + O — 2 | G- 2 |
r 9010 © 9P lo © 96 1o © 9Pk 1o
K| ~ o - oK; oKk | ~
+Ag_ e 0oy 1{01.0, 11— E E ' Pk} - Age pO’Ui[aPi"' 0,-> —| 6-> —|
k 0 © 9Pk lo © 9010 r 9Pk lo

+ O 1A 030

Thus, it has been shown that, since dyk|y, dpk|o, and Aj—1
are small as mentioned before, the stability of a fixed point
{6y, po} is the same as the corresponding one in the nearest-
neighbor analysis for the same {n;} introduced in Eq. (15).

Then, we have only to investigate the linear stability for
the nearest-neighbor model to obtain the stability of fixed
points of the exact SO model. The linearized differential
equations of the nearest-neighbor model become

0,=— e 10, (ap;i - 0y) — 2¢Pig;0;

+ e_p0i+10'i+l(aﬁi+l + 5i+1)’ (26)

pi=cze Pirloy_y(ap;_; = 6_1) — 2acze™Miop;

+ 3P0 (P + Orp). (27)
By means of ordinary eigenvalue analysis, we find that fixed

points are stable if and only if they satisfy o;=1 for all i.

Scales of distances
between elements

01 s

n=2 ——
n=3 ——

FIG. 3. (Color online) The schematic illustration of an example
of hierarchical cluster structures arising in final states of SO model.
Directions of arrows represent the phases of oscillators. Lines under
the arrows indicate the units of components of clusters. We can find
that small clusters make up larger clusters and those make up fur-
ther larger clusters.

_ v o
¢ = K;) + Aj e’ sin(apiy + 6 -

c— K;r+l)

1= c=K_y) = AjePisin(ap; + 6~ c - K;), (24)

(25)

This means that, when the distance between any pair of ad-
jacent particles takes the value labeled by even n; or odd n;,
the phase difference takes nearly O or r, respectively. Note
that this stability condition corresponds with that for the two-
body system [30].

In contrast, we can show that all fixed points of type (II)
are not stable in the same manner, noting that cos(apg;— 6,
—c—Ky;) =—cos(apg;+ Oyi—c—k;;) holds for type (II) fixed
points while cos(apg;— by;—c— ky;) =cos(apy;+ 6yi—c— Kp;)
for type (I).

As a consequence, we have derived all static stable con-
figurations of elements under the condition Eq. (19). For
example, if 0<c< g the minimum clusters consist of ele-
ments between which the distances are labeled by n=0
where the phases of those elements are almost the same. The
second smallest clusters consist of those minimum clusters
all of which are placed apart from another in the distance
labeled by n=1. Then the phase differences between them
are almost 7. In a nesting manner, we find that hierarchical
cluster structures emerge (see Fig. 3).

VI. EXAMPLE: THREE ELEMENTS

Let us consider SO model for three elements. The equa-
tions of motion become

g =e P sin(ap, + 6, — ¢)

+ e P17P2 Sin[a(p1 + pz) + (01 + 02) - C], (28)

=:ATe™ sin(ap, + 0, — c — K7), (29)
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U =e P sin(ap, — 0, —c) + e sin(ap, + 6, — ¢),

(30)
J=e P2 sin[alp, + p,) — (6; + 6,) — ¢]
+eP2sin(ap, — 6, —c), (31)
=:Aje P2 sin(ap, — 6, — ¢ — K3), (32)
Fi=Ale P sin(ap, + 6, - c— k}), (33)
Fa=—ePisin(ap; — 0, —c) + e P2 sin(ap, + 6,—¢),
(34)
F3=—Ase P2 sin(ap, — 6,— c - K;), (35)
where
. —0.ePEisine

sin k; = —= (36)

Ay

. l+o5ePsicosc

COS K; = — , (37)

Ap
A =[1+ 05 2ePiz1 cos ¢+ e 2Pix1]12] (38)
g'i: :=cos(ap; = 6,—¢). (39)

Firstly, we find fixed points of this system. Fixed points sat-
isfy the following equations:

sin(ap, - 6, -¢) =0, (40)
sin(ap, — 6, —c — k;) =0, (41)
sin(ap, + 6, —c— ;) =0, (42)

sin(ap, + 6, —¢) =0. (43)

Then, of=0; =:0;=1 or —1. With the result of the linear
stability analysis in the previous section, stable fixed points
are formally written as follows for a set of integers (n;,n,):

1 1 1
(p1,01)=[;<c+2n1ﬂ'+ EKT>,EKT:| (44)

1 1 1
or —|:C+(2n1+1)7T+—KT:|,7T+—KT ,  (45)
a 2 2

1 1 _ I _
(p2,05)=| —|c+2nm7m+ =K, |,— =K, (46)
a 2 2

1 I _ 1 _
or _|:C+(2n2+1)77+_K2:|,7T—_K2 ) (47)
o 2 2

Next, let us estimate the distances and the phase differences
between elements. Considering Egs. (36) and (37) and noting

PHYSICAL REVIEW E 81, 046220 (2010)

that o;=1 is the stability condition, we approximately ob-
tain

+_ e—l/a[c+2nzw]

K= _ e—l/a[c+(2nz+l)'n']

sin ¢,

(48)

sinc, or

_ e—l/a[c+2n17r] —1/afe+(2n +1) 7]

sin c.
(49)
By direct substitution to Eqgs. (44)—(47), we obtain the dis-

tances and the phase differences between elements approxi-
mately.

Ky = sinc, or —e

VII. CONCLUDING REMARKS

A particular type of one-dimensional swarm oscillator
model has been studied in this paper. As a result, all static
cluster structures emerging in final states have been identi-
fied. It has been found that this model exhibits hierarchical
cluster structures. In the derivation, renormalization proce-
dure effectively works to topologically obtain the configura-
tions of elements. It has been shown with the three-body
system that, because of many-body effects, the distances be-
tween elements are slightly changed compared with the two-
body SO model (the detailed discussion for the two-body
system is presented in [30]). For many models presented to
date, collective behaviors of finite number of dynamical ele-
ments have been studied mainly with numerical simulations.
In contrast, it is shown that SO model is one of the valuable
models where we can analytically understand the behavior of
elements. Although no natural phenomenon which can be
directly described by this model have been discovered yet,
through the mathematical investigation of this model, we ob-
tain a physically meaningful fact that the hierarchical cluster
structure may appear in other systems. From the derivation,
we can conclude that it may emerge in a system which has
the following two factors: (i) the two-element system has a
large number of stable distances (this means that, in other
words in this paper, there are many stable distances which
can be labeled by index {n;}). (ii) There exist short-range
interaction between elements in the system. Technologies
with which we can design tiny devices or robots with making
use of self-organizations, self-assemblies, or swarm intelli-
gence are rapidly developing today [31-34]. Results of
analysis here may be applicable in designing them.

Dynamical properties such as autocorrelation functions or
characteristic cluster sizes seem to be interesting matter.
They cannot be clarified with analytical calculation here.
They will be studied with numerical calculations in the next
step more generally without the constraint ¢;=c,. SO model
in higher-dimensional space should be studied because more
kinds of patterns appear there. With numerical simulations,
we have found that the hierarchical cluster structures pre-
sented in this paper also appears in two-dimensional SO
model as stated in introduction. The renormalization strategy
taken in this paper may be applicable in revealing ordered
states in higher-dimensional space or to other models in
which there is short-range interaction between elements such
as Morse potential [10].
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APPENDIX: THE DERIVATION OF RENORMALIZED
SO MODEL

In equations of motion (5) and (6), the term proportional
to e PimTPikTPirk+1 | is renormalized to that proportional to
e Pim~Pirk both of which denote the interaction between the
ith element and the element on the “right” of it, as follows:

e PPk sinfalp; + o+ pig) + O+ o+ Oy — ]
+Ae P TP Pivket sin[ al(p; + ¢t Pk + Pioket)
+ 0+ ot O+ Oy — ¢ — K]

= A'e™P Pisk sin[al(p; + -+ + pig)

+ 6+ +0,,-c—«K'], (A1)
where
A’ = [1+2Ae ik cos(apiypet + Oripar — K)
+ A% 2Pivkn ]2 (A2)
cos k" :=[1 +Ae Pitk+t coS(APpps1 + Oipper — K) VA",
(A3)

PHYSICAL REVIEW E 81, 046220 (2010)

sin k' := — Ae Pkt sin(app e + Oiper — KA. (A4)

In the same manner, interactions between the ith element and
elements on the “left” of it are renormalized as follows:

AePirkPik it sin[alpyy_y + pig + 7+ pict)
= (Ojgr + O+ o+ 0 y) —c = k]
+e P P sinfalpig+ o+ picy)
= (Ot -+ 0y) —c]

=t A e Pk Pt sinfapig+ 4 pisy)

—(Og+ -+ 0) —c— k'], (A5)
where
A= [1 + 2Ae7Pi-k-1 COS(C(p[_k_l + 0i—k—1 - K)
+ A% 2Pink1] 12 (A6)
cos k' == [1+AePi--1 cos(ap;_j_; + Oy — K)J/A',
(A7)

sin k' = — Ae i1 sin(ap;_g_; + Oy — K)/IA". (A8)

Repeating this procedure, we obtain the renormalized form
of equations of motion Egs. (5) and (6).
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